

AAS-PROVIDED PDF • OPEN ACCESS

The Study of Quasar Clustering at Low Redshifts

To cite this article: Jose Ordóñez and Carolyn Stripling 2022 *Res. Notes AAS* **6** 90

Manuscript version: AAS-Provided PDF

This AAS-Provided PDF is © 2022 The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
<https://creativecommons.org/licenses/by/4.0>

Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.

View the [article online](#) for updates and enhancements.

The Study of Quasar Clustering at Low Redshifts

1 JOSE ORDONEZ AND CAROLYN STRILING

2 ¹ *The University of Texas at Austin, Austin, Texas*

3 ABSTRACT

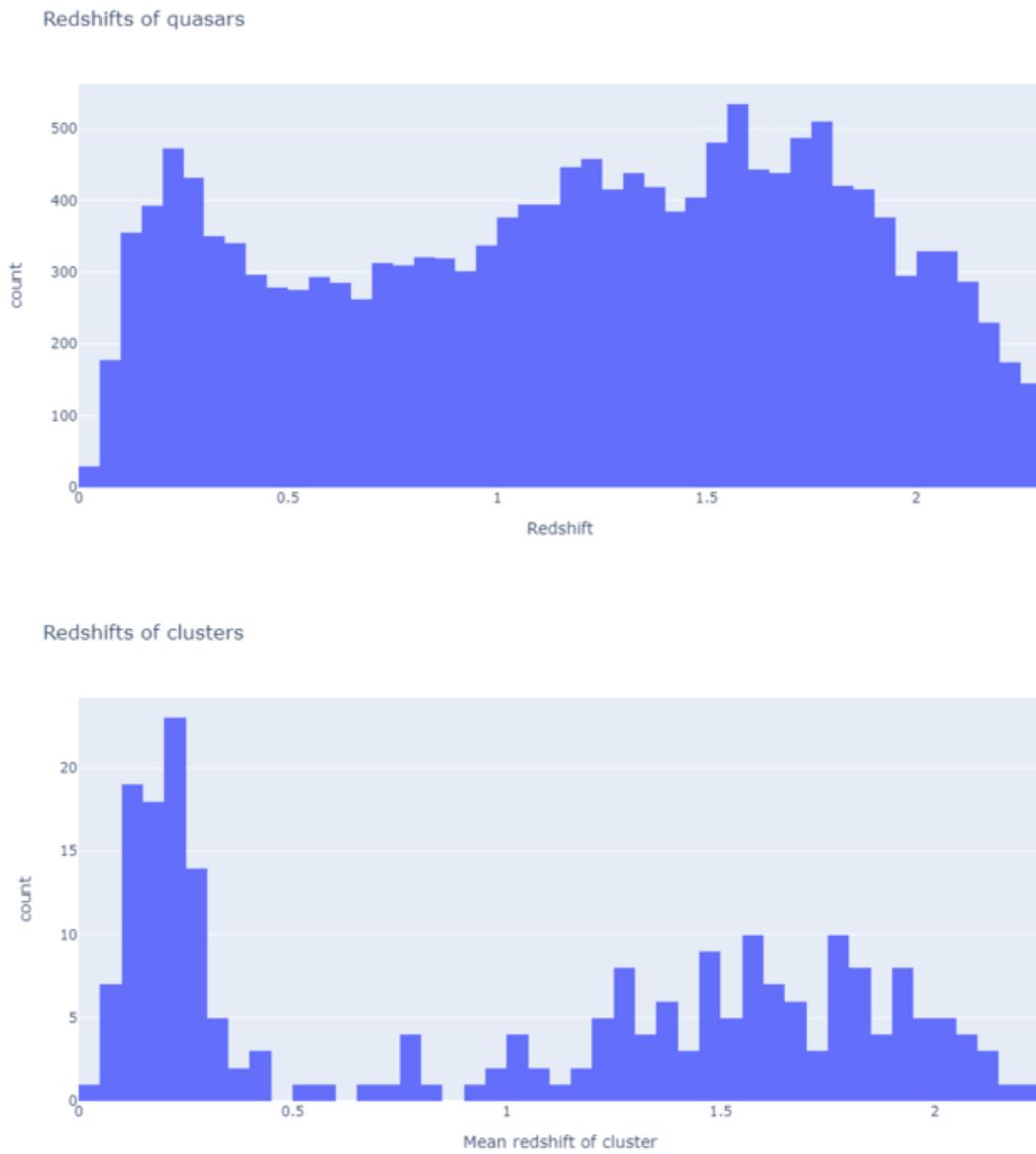
4 We use a nearest neighbor algorithm combined with the machine learning clustering function DB-
5 SCAN (Density-Based Spatial Clustering of Applications with Noise) to analyze a subset of quasars
6 from the Sloan Digital Sky Survey. Our analysis shows evidence of clustering up to $z \sim 2$, with ev-
7 idence of an increase in clustering at lower redshifts ($z < 0.5$). Our findings may suggest that, over
8 time, the gravitational interaction between quasars has led to more clustering at low redshifts.

9 1. INTRODUCTION

10 Due to quasars' high luminosity and location at the center of massive, distant galaxies, analyzing their properties
11 is crucial in understanding galaxy formation and the large scale structure of the universe (Bahcall 1988; Shen et al.
12 2009). Attempts have been made to determine the extent of quasar clustering over the past 40 years, for example by
13 using the nearest neighbor test along with a Monte Carlo routine (Chu & Zhu 1983) or by using the redshift-space
14 correlation function (Ross et al. 2009). However, even in 2009, results from research on quasar clustering were not
15 yet comparable to those of local galaxy clustering (Shen et al. 2009). In this paper, we revisit the problem of quasar
16 clustering using a similar approach as Chu & Zhu, but using a more modern value of $H_0 = 72 \text{ km s}^{-1} \text{ Mpc}^{-1}$ instead
17 of their value of $H_0 = 50 \text{ km s}^{-1} \text{ Mpc}^{-1}$, and combining a nearest neighbor algorithm with DBSCAN (Density-Based
18 Spatial Clustering of Applications with Noise), a machine learning function used to determine cluster membership
19 (Pedregosa et al. 2011).

20 2. DATA

21 Data for our quasars were obtained from the First Data Release of the Sloan Digital Sky Survey (SDSS) (Schneider
22 et al. 2003), from which a total of 16,826 quasars were sampled. This was done by using an SQL query to select all
23 objects with a `specclass=3` (the quasar class) from the `SpecPhoto` table. The obtained quasars range in redshift from
24 $0.1 < z < 5.4$, although the vast majority ($> 96\%$) have a $z < 2.3$. The given right ascension and declination were
25 transformed into galactic longitude and latitude as well as Cartesian x , y , and z coordinates. We computed estimated
26 distances to each quasar using their redshifts along with Hubble's constant.


27 3. RESULTS

28 We first wrote our own nearest neighbor algorithm. By only considering quasars which are close to a given quasar's
29 x , y , and z coordinates instead of all the quasars in the sample, our algorithm can efficiently determine the distance to
30 a given quasar's nearest neighbor. Using our nearest neighbor algorithm, we find that the mean distance to a quasar's
31 nearest neighbor in our data is 41.8 Mpc. This value is then used as one of the two parameters for the DBSCAN
32 function. Specifically, we set `eps` (the maximum distance a quasar can be from another to be considered part of the
33 same cluster) to 41.8. For the parameter `n` (the minimum number of quasars in a dense region required to be considered
34 a cluster), we use a value of 5. This value is chosen to be small enough to maximize the number of clusters obtained
35 from running DBSCAN while being large enough to allow the estimation of cluster radii using a convex hull without
36 all hulls becoming irregular tetrahedrons.

37 Running the DBSCAN function with these parameters finds a total of 228 clusters in our data. An analysis of each
38 cluster was done to obtain its number of members, approximated radius (idealizing each cluster to be a sphere with the
39 volume of the convex hull encompassing the members), and mean redshift. On average, our clusters had 7.5 members
40 and a radius of 15.5 Mpc. The distribution of the clusters' redshifts is compared to the distribution of the original
41 quasars in Figure 1. One can see that, apart from a gap in $0.5 < z < 1$, there exists evidence of clustering up to $z \sim 2$.
42 The 4% of quasars in our data with a $z > 2.3$ were too few to result in any significant clustering at that redshift range.

2

43 Furthermore, the amount of clustering peaks at a redshift of ~ 0.25 . The largest cluster that was found in our data
 44 also resides in this area, with a $z = 0.126$ and a total of 52 members.

Figure 1. Histograms of the distribution of redshifts of quasars and redshifts of the found clusters.

45 4. CONCLUSIONS

46 Our value for the mean distance to a quasar's nearest neighbor of 41.8 Mpc is substantially smaller than Chu &
 47 Zhu's value of 166.7 Mpc in their fields. We attribute this to the fact that Chu & Zhu analyzed two fields of ~ 120
 48 quasars and used a smaller value for Hubble's constant. Our more recently updated catalogue of thousands of quasars
 49 along with a more modern value of $H_0 = 72 \text{ km s}^{-1} \text{ Mpc}^{-1}$ help explain this discrepancy, and suggest that our value
 50 is more accurate.

51 By definition, DBSCAN finds areas of clustering by determining whether a quasar is in a dense region of space (here
 52 defined as a region of space where distances between quasars are less than the average distance to a quasar's nearest
 53 neighbor) or not. The distribution seen in Figure 1 implies that, although there exists evidence of clustering up to

54 $z \sim 2.2$ (apart from a gap at $0.5 < z < 1$), there is significantly more clustering at lower redshifts ($z < 0.5$) than
55 higher ones. This finding is especially significant when taking into account the fact that, due to the survey gathering
56 data from runs of the sky, more total volume of space is considered as redshift increases. We would therefore expect
57 an equal if not larger amount of clustering at higher redshifts, yet we see the opposite. A possible explanation for this
58 trend is that quasars along with their host galaxies need time to be able to interact gravitationally in order to cluster
59 in higher-density areas, explaining the greater amount of clustering in the closest redshifts.

60 We would like to thank Shyamal Mitra, our mentor in the Geometry of Space research group at the University of
61 Texas at Austin, for his support and guidance in developing our research.

REFERENCES

62 Bahcall, N. A. 1988, Annual Review of Astronomy and
63 Astrophysics, 26, 631,
64 doi: [10.1146/annurev.aa.26.090188.003215](https://doi.org/10.1146/annurev.aa.26.090188.003215)

65 Chu, Y., & Zhu, X. 1983, The Astrophysical Journal, 267,
66 4, doi: [10.1086/160839](https://doi.org/10.1086/160839)

67 Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011,
68 Journal of Machine Learning Research, 12, 2825

69 Ross, N. P., Shen, Y., Strauss, M. A., et al. 2009, The
70 Astrophysical Journal, 697, 1634,
71 doi: [10.1088/0004-637X/697/2/1634](https://doi.org/10.1088/0004-637X/697/2/1634)

72 Schneider, D. P., Fan, X., Hall, P. B., et al. 2003, The
73 Astronomical Journal, 126, 2579, doi: [10.1086/379174](https://doi.org/10.1086/379174)

74 Shen, Y., Strauss, M. A., Ross, N. P., et al. 2009, The
75 Astrophysical Journal, 697, 1656,
76 doi: [10.1088/0004-637X/697/2/1656](https://doi.org/10.1088/0004-637X/697/2/1656)