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ABSTRACT

Galaxy deblending is a critical challenge in astronomical surveys, particularly in large-scale sur-
veys where overlapping galaxies complicate accurate observation and analysis. This paper evaluates
autoencoder-based deep learning models for galaxy deblending, comparing convolutional autoencoders
(CAE), Variational Autoencoders (VAE), and Variational Autoencoder-Generative Adversarial Net-
works (VAE-GAN). We find that CAEs have the best performance. We discuss the performance of the
models as well as possible areas of improvements.

1. INTRODUCTION

When conducting large surveys of the sky and observing thousands of celestial bodies, galaxies within the same
line of sight often overlap with each other. The sheer amount of galaxy data collected means that these overlaps
occur fairly frequently, muddling data collection. We will refer to this phenomenon as “galaxy blending” (Melchior
et. al 2021). The ability to disentangle these overlapping sources is essential for precise photometric and astrometric
measurements.

In this paper, we will evaluate several autoencoder-based deep learning models for galaxy deblending, including
convolutional autoencoders (CAE), Variational Autoencoders (VAE), and Variational Autoencoder- Generative Ad-
versarial Networks (VAE-GAN).

Let us first review the models used. All three of our models were made using the PyTorch deep learning library
(Paszke et al., 2019). Convolutional autoencoders compress images into a latent space via an encoder and reconstruct
them with a decoder (Zhang 2018). We use a 4-layer convolutional encoder-decoder architecture with symmetric
downsampling and upsampling. The encoder maps 64 x 64 RGB images through 3 x 3 stride-2 convolutions with
channel sizes 3 — 64 — 128 — 256 — 512 and standard ReL.U activations.

Variational autoencoders add a probabilistic bottleneck, enabling greater variability in reconstructions (Kingma
& Welling 2013). We implement a variational autoencoder with a 4-layer convolution-based encoder (3 — 64 —
128 — 256, 5 x 5 stride-2) projecting to a fully connected layer of size 2048, from which y,logo? € RY are derived.
The decoder maps latent vectors z € R? to 8 x 8 x 256 and reconstructs images using three transposed convolutions
(256 — 128 — 32 — 3).

VAE-GANSs build upon VAESs’ efficient latent representations with Generative Adversarial Network (GAN) based
discriminators that incentivize higher-quality samples (Larsen et al. 2016). Our VAE-GAN implementation augments
our existing VAE architecture; the added discriminator applies four convolutions (3 — 32 — 128 — 256 — 256)
followed by a fully connected projection (256 x 8 x 8 — 512 — 1).

2. DATASET

In order to train our models, we needed a large dataset of high-quality images so that the models could learn pat-
terns that underly galaxy deblending tasks. Previous literature has tackled this problem in two ways: (i) artificially
“blending” real galaxy images and (ii) generating synthetic images to train with (Reiman & Gohre 2019). Both of
these methods have distinct advantages and disadvantages, but we opted to use the former. We decided to use a galaxy
image dataset produced by the team behind the Galaxy Zoo project for a Kaggle challenge on galaxy classification
(Dieleman et al. 2015)



Research Notes of the AAS ©2025. Published by the American Astronomical Society

To artificially blend images, we followed a process similar to that used in the Reiman and Gohre’s paper on galaxy
deblending (Reiman & Gohre 2019). To create a set of galaxy images, we first load two random batches of 128 images
from the image dataset. We then “perturb” all of the images in the second batch by rotating and translating the
images. The images are rotated by 1 radian and are translated along the x- and y-axes randomly by 5 to 10 pixels.
This is done so that the final blend more accurately reflects real-world circumstances as galaxies don’t tend to stack
on top of each other exactly centered. Finally, we stack the images from both batches on top of each other by taking
the highest RGB value for each pixel among each set of two images. This method of taking the highest RGB value
was used by Reiman and Gohre to prevent diluting faint features since the majority of pixel values in the images are
zero or close to zero. Given this data, the goal of our models is to reconstruct the images in the first batch - i.e. the
galaxy the image is centered on. The final training dataset has 70k images.

3. RESULTS

We evaluated all three of the models we built using three metrics: Mean Squared Error (MSE), Peak signal-to-noise
ratio (PSNR), and Structural similarity index measure (SSIM). These three values are standard metrics in image
processing to compare the similarity of two images. A lower MSE indicates greater similarity while a higher PSNR or
SSMI indicate a higher quality reconstruction.

Our results are summarized as follows: the CAE has a MSE, PSNR (in dB) and SSIM of 8.117E-4, 3.092E1 dB,
and 8.067E-1, respectively; the VAE has values of 2.446E-3, 2.615E1 dB, and 5.955E-1, respectively; the VAE-GAN
has values of 1.963E-3, 2.708E1 dB, and 6.308E-1, respectively. Of the three models, the CAE had the best perfor-
mance, followed by the VAE-GAN, and then the VAE. Despite the strong performance of the CAE, the results also
highlight several issues, particularly with maintaining the structural integrity of spiral galaxies in the reconstructed
image. Figure 1 depicts these overall results. While most galaxies are reconstructed accurately, in a few extreme cases,
we observed that the CAE would blur the arms of a spiral so that it appeared as an elliptical galaxy (see Sample 4 in
Figure 1). As for the images generated by the VAE and VAE-GAN, they were noisier and less well-defined.

Figure 1. 8 samples of blended and deblended images. For each sample, left: blended input, right group: CAE, VAE-GAN,
VAE outputs in that order.
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4. CONCLUSION

This paper presented and evaluated autoencoder-based approaches for galaxy deblending. While past literature
has used deep learning techniques including GANs, CNNs, and VAEs in isolation, this approach includes CAEs and
hybrid models (VAE-GANSs) and thus explores techniques that have not yet been used for galaxy deblending.
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There is much work to be done in continuing to develop autoencoders as an effective means for galaxy deblend-
ing. In the future, we plan on building custom loss functions that account for astronomical parameters such as flux,
ellipticity, and the point spread function (PSF) to maintain the structural integrity of the galaxy.

As mentioned, the VAE-GAN produced very blurry output images. This is likely because the decoder samples
from a continuous latent space to reconstruct the output, meaning that the sampled features are not guaranteed to be
accurate. One possible solution is to restructure the reconstruction term of VAE loss function such that it explicitly
penalizes the generation of blurry images. This approach was proposed by Bredell et al. and showed promising results
(Bredell et al. 2023). Another approach is to change the structure of the latent space itself; a variation of VAEs
called Vector-Quantized Variational Autoencoders (VQ-VAEs) implements this. Instead of following a probabilistic
distribution, the latent space of VQ-VAEs consists of discrete elements which can be optimized to produce sharper
results. A possible solution could thus involve implementing a hybrid model that combines the discrete latent space
of the VQ-VAE with the high-quality image generation ability of the GAN.
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