

AAS-PROVIDED PDF • OPEN ACCESS

Machine Learning-based Classification of Variable Stars

To cite this article: Anjie Liu and Jasmine C. Xu 2024 *Res. Notes AAS* **8** 83

Manuscript version: AAS-Provided PDF

This AAS-Provided PDF is © 2024 The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
<https://creativecommons.org/licenses/by/4.0>

Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.

View the [article online](#) for updates and enhancements.

Machine Learning-Based Classification of Variable Stars

1 ANJIE LIU ¹ AND JASMINE C. XU¹

2 ¹ *The University of Texas at Austin*

3 ABSTRACT

4 The classification of variable stars, essential for revealing information on stellar properties and cosmic
5 distances, traditionally relied on statistical methods and limited data. With the emergence of
6 transformative machine learning methodologies and large stellar surveys, we are able to perform more
7 efficient, accurate, and robust handling of expansive databases. We deploy two different machine learning
8 models - random forest and XGBoost - that effectively classify variable stars identified in the most
9 recent phase of the Optical Gravitational Lensing Experiment (OGLE-IV) using four features: 1) time
10 of minimum brightness, 2) I-band amplitude, 3) mean or maximum I-band magnitude, and 4) period.
11 The two models achieve a cross-correlation score of 99.00%, indicating largely shared classifications.
12 The results produced by the models uncover new insights into the precision of supervised learning
13 models in predicting variable stars with the aid of the most up-to-date survey data.

14 **Keywords:** Variable stars — Machine Learning — Classification — Random Forest — XGBoost

15 1. INTRODUCTION

16 Since their discovery in 1638, variable stars have intrigued amateur and professional astronomers alike (Hogg 1933).
17 Much is now known about variable stars—stars whose brightness fluctuates over time—including the fact that differences
18 in factors such as period, luminosity, and mass split variable stars into several main classes and further subclasses.
19 While human astronomers may be more capable of distinguishing noise from legitimate data, the feasibility of human
20 classification of celestial objects is limited by the sharp increase in the pace and volume of astronomical data collection.
21 Given this trend, a suitable approach to astronomical questions is to use modern technology that can handle
22 vast amounts of data with reasonable efficiency and accuracy.

23 The primary goal of this work is achieved by building and comparing a random forest and an XGBoost model.
24 Model performances can be quantified by computing and comparing classification metrics.

25 2. DATA ANALYSIS

26 To provide an accurate classification, we obtained data from the fourth and most recent phase of the Optical
27 Gravitational Lensing Experiment (OGLE-IV) (Udalski et al. 2015). OGLE uses microlensing to identify stars in the
28 Small and Large Magellanic Clouds, as well as in the Galactic Bulge and Galactic Disk, providing one of the most
29 comprehensive and up-to-date databases of classified variable stars (Udalski et al. 1992). Additionally, OGLE-IV
30 includes an extensive collection of features for each star, including the average I-band and V-band magnitudes, I-band
31 amplitudes, and photometric data. This wealth of features makes the database well-suited as a source of input data
32 for supervised classifier models.

33 Ultimately, we extracted a dataset comprised of around 736,000 variable stars taken from all target fields of the
34 OGLE-IV database. This encompasses eight types of variable stars, namely, eclipsing binaries, RR Lyrae variables,
35 long-period variables, Delta Scuti variables, classical Cepheids, type II Cepheids, Heartbeat stars, and anomalous
36 Cepheids.

37 3. METHODOLOGY

38 We chose to build a random forest classifier and an XGBoost classifier, both of which are learning methods who
39 combine the predictions of multiple learners to obtain high prediction accuracy (Breiman 2001). Our selected features
40 to use in the training of our models are 1) time of minimum brightness in days, 2) I-band amplitude, or main eclipse
41 depth, 3) mean (for pulsating stars) or maximum (for eclipsing binaries) I-band magnitude, and 4) period in days.

42 As previously mentioned in section 2, there is a significant amount of class imbalance present within our dataset
 43 that could greatly hinder a classifier model's ability to correctly identify minority classes. We aim to address this class
 44 imbalance using Synthetic Minority Oversampling Technique (SMOTE), a type of data augmentation that generates
 45 synthetic samples for the minority classes using the existing minority class samples (Chawla et al. 2011). This method
 46 will ensure that there are equal numbers of stars in each class, and ultimately increase the model's ability to learn
 47 from the minority classes.

48 Following the preprocessing of our dataset, we constructed a random forest model and an XGBoost model. The
 49 construction, training, and testing of our machine learning models relied heavily on Python's Scikit-learn library. To
 50 optimize model performance, a randomized search was used to tune hyperparameters for both models. The determined
 51 optimal parameters were then used to train the respective models.

52 4. RESULTS

53 Our random forest and XGBoost classifiers achieved accuracy scores of 97.71% and 97.68%, respectively. Their
 54 confusion matrices, shown in Figure 1, display comparable overall trends in that for both models, the main source
 55 of error comes from the misclassifications of RR Lyrae as eclipsing binaries and vice versa. By examining this pattern
 56 more closely, we observed that in many instances of these misclassifications, the features were extremely similar, such
 57 that the model could not distinguish between them. Since only 4 features were used to train our models, it might be
 58 beneficial for future investigations to use more features.

59 **Figure 1.** Confusion matrix of random forest classifier

60 To understand the concordance in classifications made by our models, we computed a cross-correlation score of
 61 99.00%. This suggests that a vast majority of classifications overlap between both models. In the subset of classifica-
 62 tions that differed, many of them involved misclassifications of RR Lyrae and eclipsing binaries.

63 5. REFLECTION AND FUTURE DIRECTIONS

64 Our random forest and XGBoost models achieve high accuracy scores of 97.71% and 97.68%, respectively. These
 65 satisfactory results across all variable star types are largely aided by the choices of features, as well as the effective
 66 management of imbalanced data.

67 While our investigation has shown positive results, we hope to extend it by constructing more machine learning
 68 models that can be compared to our current random forest and XGBoost classifiers. We most strongly aim to take
 69 advantage of the availability of photometric data to implement a recurrent neural network. Unlike our current models,
 which rely on summary features, neural networks can directly take in raw data, such as photometric readings, and

70 so would provide a new approach to variable star classification. Similarly, a convolutional neural network could be
71 applied alongside this, given that photometric data can be represented as images.

72 Another further step we aim to take is to apply our current models to other variable star databases in addition
73 to OGLE-IV, which our models were trained upon. If applied to classified datasets, this would allow us to confirm
74 the applicability and effectiveness of our models; and if applied to unclassified datasets, this gives us the potential of
75 identifying new variable stars.

76 ACKNOWLEDGEMENTS

77 We would like to thank Dr. Shyamal Mitra, Dr. Karl Gebhardt, and our peer mentors, Jose Ordonez and Rik
78 Ghosh, for their support and advice throughout our research journey. We would also like to extend our gratitude to
79 the Geometry of Space stream of the Freshman Research Initiative at The University of Texas at Austin for giving us
80 the opportunity and resources to explore our interests and make scientific contributions.

81 REFERENCES

82 Breiman, L. 2001, Machine Learning, 45, 5
83 Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer,
84 W. P. 2011, doi:10.48550/ARXIV.1106.1813
85 Hogg, E. G. 1933, Journal of the Royal Astronomical
86 Society of Canada, 27, 75, bibliographic Code:
87 Udalski, A., Szymanski, M., Kaluzny, J., Kubiak, M., &
88 Mateo, M. 1992, Acta Astronomica, 42, 253,
89 1992AcA....42..253U

90 Udalski, A., Szymański, M. K., & Szymański, G. 2015,
91 OGLE-IV: Fourth Phase of the Optical Gravitational
92 Lensing Experiment, arXiv, arXiv:1504.05966 [astro-ph]