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Comparison of Convolutional Neural Networks and Random Forest Classifiers for
Strong Gravitational Lens Identification
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3 ABSTRACT
4 Strong gravitational lenses have been instrumental in providing insight into various as-

5 tronomical problems, including analyzing the dark matter distribution of the universe. Ef-
6 fective identification of these events is made possible through machine learning algorithms,
7 with many recent studies focusing on neural networks. However, very few have investigated
8 the tradeoffs between different algorithms besides neural networks for lens identification.
9 Our paper compares a convolutional neural network and a random forest classifier to deter-
10 mine the benefits of each for this task. We find that while convolutional neural networks do
1 achieve higher accuracy, using random forest classifiers to supplement them could increase
12 the effectiveness of such algorithms. As a result, models that utilize both side-by-side to
13 make predictions may increase in accuracy. This should be explored by future research.

14 1. INTRODUCTION

15 Strong gravitational lensing is a phenomenon in which gravitational fields of foreground
16 objects bend light from background objects to produce multiple images, arcs, and rings.
17 Studying strong lensing systems has many applications, ranging from constraining the
18 Hubble constant to studying dark matter distributions. Due to these applications, identi-
19 fying these systems can have great impacts on astronomical progress (Tyson et al. (1990);
20 Yao-Yu Lin et al. (2020); Huang et al. (2020)).

21 As the amount of astronomical data increases at a rapid pace, methods to identify lens-
22 ing events must become increasingly accurate. Many efforts have mainly utilized some
23 combination of neural networks to accurately learn lensing features (Davies et al. (2019);
24 Pourrahmani et al. (2018); Rojas et al. (2022)). These studies have reached high levels
25 of accuracy and discovered new lenses at high levels of confidence. As a result, improv-
2 ing models further necessitates investigating other machine-learning techniques. One such
27 class of algorithms is random forest classifiers, which, while not normally used for image
28 classification, are adept at breaking down high-dimensional data. Our study compares the
29 performance between a convolutional neural network (CNN) and a random forest classifier
30 (RFC) to determine the tradeoffs between the two algorithms for strong lens identification.
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3t In doing so, we hope to improve the process of lens identification to make better use of
32 astronomical data.

33 2. DATA COLLECTION METHODS

34 The dataset to train these models is made up of 68,000 64x64 pixel, black-and-white,
35 close-up images of both lens and non-lens objects. Since this study aims to determine the
36 ability of RFCs and CNNs to identify lenses, using images focused on the object itself
37 helped to isolate that objective. This also simplified and streamlined the collection of data,
38 as did the decision to only include single-lens systems in the study.

39 The data came from three main sources: the Sloan Digital Sky Survey (SDSS), the Sloan
40 Lens ACS Survey (SLACS), and strong lensing simulation software. 60,000 stars and
#1 galaxies were chosen from SDSS for the non-lens portion of the dataset (Kollmeier et al.
42 (2019)). Galaxies within 0.5 arcseconds of a lens galaxy listed in SLACS were excluded
43 from the non-lenses. This aimed to minimize the number of lenses within the SDSS data.
44 Additionally, galaxies with a redshift greater than 1 were excluded from our dataset.

45 The lensing images were obtained from SLACS and Paltas, a Python package for lens
46 simulation (Wagner-Carena et al. (2022); Birrer & Amara (2018); Birrer et al. (2021)).
47 The SLACS lenses were made up of 80 grade A, B and C lenses, and 1000 lenses were
a8 obtained from Paltas to supplement them (Bolton et al. (2006)). To randomly generate
49 lenses in Paltas, the parameters (ellipticity, center coordinates, etc.) of each simulation
50 were chosen from a normal distribution centered on the default values provided. These
51 included a Sersic profile with a radius of 0.35 arcseconds and index n = 3, an Einstein
52 radius of 1.1 arcseconds, and a width of 0.03 for the Gaussian used. There were only 1080
53 lensing images from both SLACS and simulations in total, so we augmented each image
54 through three rotations and flips at each orientation (including the original). This resulted
55 in 8640 total lensing images, which were downsampled to a size of 64x64 pixels.

56 3. RESULTS

57 We utilized TensorFlow to build a CNN made up of alternating 2D Convolution, Max-
58 pooling, and Dropout layers, where the dropout rate was 0.2 (Abadi et al. (2016, 2015)).
59 Furthermore, our CNN utilized the Adam Optimizer and ReL.U as its activation function.
60 Our random forest was made up of 250 estimators with no limit for the depth of each de-
61 cision tree. It was first trained on a dataset consisting of satellite images of water bodies
62 and subsequently trained on our lenses training set (Kshetri (2023)). Both models used a
63 batch size of 32 and 10 epochs during training, as well as a 70-15-15 split for the training,
64 validation, and testing set, respectively.
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Figure 1: Misclassification Examples
Top Row: 128 lenses misclassified by both the CNN and the RFC.
Middle Row: 122 lenses misclassified only by the CNN. These lenses are harder to
distinguish from non-lens galaxies.
Bottom Row: 178 lenses misclassified only by the RFC. These lenses contain more

distinct features of strong lensing.

65 After training, the CNN and RFC resulted in very high accuracies, implying that some
66 degree of overfitting occurred. As a result, their performance metrics cannot be usefully
67 compared. It is worth mentioning that different configurations (lesser number of augmen-
68 tations on lensing samples, reduced number of non-lenses, and different batch sizes) did
69 not have a significant impact on model performance.

70 Our true findings lie in the inspection of the misclassified lenses, which demonstrated a
7 difference in performance between both methods. As shown in Figure 1, 128 of the lenses
72 were misclassified by both models. However, there were an additional 178 lenses that
73 only the RFC misclassified, which, upon visual inspection, were found to generally con-
74 tain easily discernible features. To be more specific, these images contained features like
75 Einstein rings that are easily recognizable even by humans. In contrast, the CNN failed on
76 122 examples that generally contained features more difficult to identify, such as galaxies
77 whose light is merely distorted and lack the presence of multiple images or rings. This
78 implies a difference in accuracy between both models based on the prominence of lensing
79 features. Our study shows that while the CNN is much better for grasping the most impor-
80 tant features of strong gravitational lenses, the RFC can cover the gaps in identifying the
81 more obscure lenses. As mentioned previously, most studies on this subject have focused
82 on neural networks. While there are some, such as Pinciroli Vago et. al, that use other
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algorithms, it is largely as an intermediate step in their model architecture (Pinciroli Vago

& Fraternali (2023)).

Thus, we propose a model that trains a CNN and an RFC side-by-side and makes a final

prediction based on a weighted output of both models. While this may lead to longer train-
ing times due to the use of two models, this design could leverage the difference in learning

between CNNs and RFCs to increase model accuracy past current benchmarks. Including
different types of input data, such as spectra or redshift, may also impact model perfor-
mance. Additionally, utilizing different types of neural networks in this configuration, such

as residual neural networks, may yield interesting results. Further research should inves-
tigate this, as well as combinations of other algorithms, to continue improving strong lens

identification models.
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