

AAS-PROVIDED PDF • OPEN ACCESS

An Analysis of Blue Straggler Stars in Open Clusters

To cite this article: Andrew Harvey *et al* 2024 *Res. Notes AAS* **8** 191

Manuscript version: AAS-Provided PDF

This AAS-Provided PDF is © 2024 The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
<https://creativecommons.org/licenses/by/4.0>

Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.

View the [article online](#) for updates and enhancements.

An Analysis of Blue Straggler Stars in Open Clusters

1 ANDREW HARVEY,¹ YUVRAJ SAHU,¹ AND ELIJAH FLORES¹

2 ¹*The University of Texas at Austin*

3 ABSTRACT

4 The presence of blue straggler stars (BSSs) in open clusters (OCs) presents an opportunity
5 to study star formation and cluster dynamics. Our paper analyzes several properties of BSSs
6 across 161 OCs of different ages, metallicities, and sizes. Specifically, we examine the impact
7 of cluster age and metallicity on the number of BSSs as well as the spatial distribution of BSSs
8 within each cluster. We report a positive correlation between the age of the cluster and the
9 number of BSSs present. This investigation into BSSs provides valuable insights into their
10 formation as well as the dynamics and interactions within open clusters.

11 1. INTRODUCTION

12 Blue straggler stars (BSSs), typically found in star clusters, are a unique category of stars that are unusually bluer and more luminous than those at the main sequence (MS) turn-off (Sandage 1953). Specifically,
13 BSSs are high-mass, high-temperature stars situated on a prolongation of the MS in the color-magnitude
14 diagram. This is an area where most stars of similar mass have already exhausted their supply of hydrogen
15 and evolved toward the red giant branch, yet BSSs remain, seemingly contradicting the anticipated course
16 of stellar evolution.

17 Our analysis was multifaceted. First, we examined the relationship between the age of a cluster and
18 the concentration of BSSs, which may provide insights into the formation timeline for BSSs. Second, we
19 considered cluster metallicity in relation to the frequency of BSSs in an attempt to relate metallicity, binary
20 frequency, and BSS frequency. Third, and finally, we examined the distance of BSSs with respect to the
21 center of their host clusters seeking to shed light on BSS formation and migration patterns.

22 2. DATA COLLECTION

23 We made use of the detailed catalog of 50 open clusters with BSSs from Li, Chunyan et al. (2023). We
24 use an additional data set with 111 OCs containing BSSs from Rain et al. (2021) for data on cluster age and
25 number of BSSs. The data sets were subsequently modified and filtered to best fit our analyses. Preliminary
26 analysis revealed the dataset from Li, Chunyan et al. (2023) contained 87 BSSs, 57 probable blue straggler
27 stars (PBSs), and 14 yellow straggler stars (YSSs), while the dataset in Rain et al. (2021) contained 897
28 BSSs, 77 PBSs, and no YSSs.

29 We used several Python libraries to conduct our analysis. Our data was organized using a combination of
30 Pandas and NumPy. Data visualizations were created using Plotly and Matplotlib.

32 3. RESULTS AND ANALYSIS

33 3.1. *Number of BSSs and Age of Cluster Relationship*

34 Our analysis revealed the number of BSSs and the age of a cluster show a positive correlation: low counts
35 of BSSs are present at every age, with larger numbers of BSS only visible in a portion of clusters with
36 $\log(\text{age}) \geq 8.7$, as seen in Figure 1(A). In other words, older OCs ($\log(\text{age}) \geq 8.7$) generally tend to have
37 more BSSs than younger OCs ($\log(\text{age}) < 8.7$).

38 As the most plausible leading theories suggest, the majority of BSSs form through dynamical processes
39 and binary interaction mechanisms such as mass transfer and merging (Gosnell et al. 2019). Consequently,
40 we hypothesize that the larger number of BSSs seen in older OCs is due to mass transfer and binary merging
41 within close binary star systems, which are expected to grow with time.

42 3.2. *Cluster Metallicity and the Number of BSSs*

43 We graphed the number of BSSs in the 50 OCs dataset from Li, Chunyan et al. (2023) as a function of the
44 cluster metallicity Z. The results show that metallicity has little correlation to the number of BSSs in these
45 clusters. Specifically, the average cluster metallicity varied between 0.010 and 0.018, without significant
46 apparent differences or trends in the number of BSSs. This is illustrated in Figure 1(B).

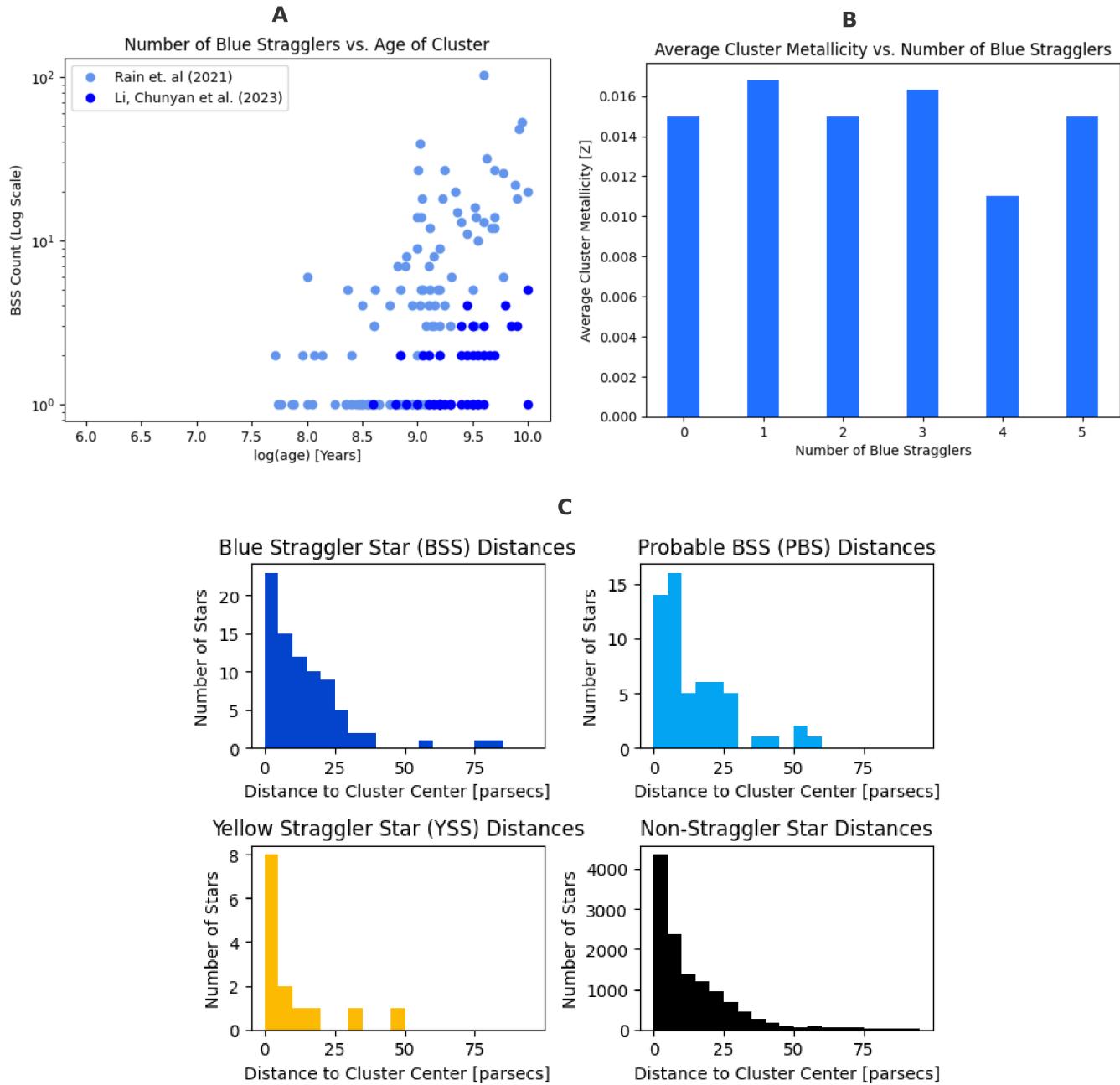
47 However, it is important to note there is some evidence to support that cluster metallicity may be correlated
48 to the number of BSSs present. Hurley et al. (2004) conducted simulations using N-body code to investigate
49 how metallicity affects the dynamics within open clusters. In these simulations, they found a greater number
50 of BSSs in high-Z OCs. It was theorized that “a greater MS turn-off mass makes it more likely that an
51 MS star will be involved in an exchange interaction and more likely that this MS star would be retained in
52 the emerging binary (Hurley et al. 2004).” While our dataset did not show a significant correlation between
53 metallicity and the number of BSSs, it is possible that the range of metallicities we examined (0.010 to
54 0.018) was not sufficiently high to observe the effects noted in Hurley et al. (2004). Higher metallicity
55 values might be necessary to see a clear correlation between metallicity and the number of BSSs, potentially
56 indicating that OC metallicity only affects the number of BSSs when it is substantially higher than that of a
57 typical middle-aged OC.

58 3.3. *BSS Distance from Cluster Centers*

59 Another factor analyzed was the relationship between straggler status and distance to the center of a
60 cluster. The cluster center locations were given in the data, and each star’s location was also provided. As
61 such, we were able to approximate the distance to the center using the Euclidean distance based on right
62 ascension and declination measurements. We did not include the parallax of each individual star in these
63 measurements, since it could add significant noise to the data—these tend to have higher error, and finding
64 parallax differences between stars and cluster centers would require much higher precision. As a result,
65 this is a 2D approximation of the true 3D distance for each star to its cluster’s center. However, since there
66 are multiple data points aggregated for our analysis, and since we would expect the distribution of true star
67 parallaxes to be normal and centered around the cluster’s parallax, we estimated that it would be relatively
68 safe to draw conclusions about distances based solely on right ascension and declination. Essentially, we
69 assumed that each star’s parallax was the same as that of the cluster’s center, since this would eliminate any
70 noise in these measurements.

71 In order to find the distance between a given star and the center of the cluster, we first calculated the
72 angular distance in degrees using the Euclidean distance formula. Then, we calculated the distance between
73 these two points by factoring in the cluster’s parallax. The following formulas describe our calculations:

$$74 \quad a = \sqrt{(RA_c - RA_s)^2 + (Dec_c - Dec_s)^2}$$


$$75 \quad 76 \quad d = \frac{1000}{Plx} \cdot \tan\left(\frac{\pi}{180} \cdot a\right)$$

77
78 The parameters utilized above are listed as follows:
79

- 80 • RA_c is the measured right ascension for the center of the cluster, measured in degrees.
- 81 • RA_s is the measured right ascension for the star, measured in degrees.
- 82 • Dec_c is the measured declination for the center of the cluster, measured in degrees.
- 83 • Dec_s is the measured declination for the star, measured in degrees.
- 84 • a is the angular distance between the star and the center of the cluster, measured in degrees, as given
85 by the above formula (which utilizes Euclidean distance).
- 86 • Plx is the measured parallax for the cluster, measured in milliarcseconds (mas).
- 87 • d is the calculated distance between the center of the cluster and the star, measured in parsecs (pc).

88 Upon conducting our analysis of these clusters, we noticed no statistically significant difference between
89 the average distance of straggler stars (SSs) compared to non-straggler stars (NSSs) to the center of their
90 clusters, as shown in Figure 1(C). For each category, the mean distances were all between 10 and 15 parsecs,
91 and the standard deviations were between 13 and 19 parsecs. Using a two-sample T test, we determined that
92 there was no statistically significant difference between the sample of NSSs and each of the three samples
93 of SSs. Specifically, when compared against the sample of NSSs, the p-values evaluated to 0.926 for the
94 BSSs, 0.894 for the PBSs, and 0.249 for the YSSs. These p-values were relatively high because the means
95 between each of the samples were relatively similar and the standard deviations were relatively large.

96 We hypothesize one reason for this lack of difference in distance is possibly due to the weaker central
97 gravitational force in OCs compared to globular clusters (GCs). Generally, GCs have been observed to
98 have a strong central concentration of BSSs (Mapelli et al. 2006). In contrast, OCs tend to be larger and
99 sparser than GCs, meaning they would likely have less dynamical friction, and the BSSs within them would
100 experience less significant mass segregation compared to those in GCs (Rain et al. 2021).

Figure 1. (A) Number of BSSs and age of cluster positive correlation; (B) Number of BSS compared to average cluster metallicity; (C) Distances to the center of a cluster for BSS, PBS, YSS, and all other stars

4. CONCLUSION

The positive correlation between the age of a cluster and its BSS frequency suggests that the formation and evolution of BSSs are linked to the dynamic processes within these clusters over time. This corroborates with the leading mass transfer and binary merger theories for the formation of BSS. In investigating various properties, we gathered meaningful insights into BSSs, OCs, and their unique characteristics and patterns.

106 5. ACKNOWLEDGEMENTS

107 108 109 We thank Dr. Shyamal Mitra & Dr. Karl Gebhardt, as well as our peer mentors Rik Ghosh & Jose
Ordonez in the Geometry of Space research stream at The University of Texas at Austin for their support
and guidance.

REFERENCES

110 Gosnell, N. M., Leiner, E. M., Mathieu, R. D., et al.
111 2019, *The Astrophysical Journal*, 885, 45,
112 doi: [10.3847/1538-4357/ab4273](https://doi.org/10.3847/1538-4357/ab4273)

113 Hurley, J. R., Tout, C. A., Aarseth, S. J., & Pols, O. R.
114 2004, *Monthly Notices of the Royal Astronomical
115 Society*, 355, 1207,
116 doi: [10.1111/j.1365-2966.2004.08402.x](https://doi.org/10.1111/j.1365-2966.2004.08402.x)

117 Li, Chunyan, Zhong, Jing, Qin, Songmei, & Chen, Li.
118 2023, *A&A*, 672, A81,
119 doi: [10.1051/0004-6361/202244998](https://doi.org/10.1051/0004-6361/202244998)

120 Mapelli, M., Sigurdsson, S., Ferraro, F. R., et al. 2006,
121 *Monthly Notices of the Royal Astronomical Society*,
122 373, 361, doi: [10.1111/j.1365-2966.2006.11038.x](https://doi.org/10.1111/j.1365-2966.2006.11038.x)

123 Rain, M. J., Ahumada, J. A., & Carraro, G. 2021,
124 *A&A*, 650, A67,
125 doi: [10.1051/0004-6361/202040072](https://doi.org/10.1051/0004-6361/202040072)

126 Sandage, A. R. 1953, *AJ*, 58, 61, doi: [10.1086/106822](https://doi.org/10.1086/106822)