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Approximating Stellar Metallicity using Photometric Machine-Learning

Rik Ghosh and Soham Saha1

ABSTRACT2

Stellar metallicity is an important metric in analyzing stellar evolution. Measuring metallicity (e.g.3

[Fe/H]) usually requires spectroscopic data, but difficulties associated with gathering spectra for distant4

objects severely reduces the number of stars for which metallicity can be calculated. The Sloan5

Expedition for Galactic Understanding and Exploration (SEGUE) spectroscopic surveys are one of6

the most abundant public-sources of objects with spectra. Despite cataloging over 106 objects, the7

SEGUE data makes up only 0.4% of the data in SDSS photometric surveys. To overcome the limited8

spectra, this machine-learning method can approximate [Fe/H] from the 5 SDSS photometric filters9

with a root-mean-square-error (RMSE) of 0.277 dex. The RMSE from this method is similar to the10

scatter expected in [Fe/H] measurements from low-resolution spectra. Therefore, this method achieves11

similar accuracy to low-resolution spectra but can be applied to a few orders of magnitude more stars12

than what the current spectroscopic surveys allow.13

Keywords: Metallicity(1031) — Photometric Systems(1233) — Stellar Evolution(1599) — Astronomy14

Software(1855) — Random Forests(1935)15

1. INTRODUCTION16

Several surveys over the years have gathered astrometric, photometric, and spectroscopic data for stellar targets.17

Despite the technological improvements in the instruments for recording data, there is an ever-growing gap between the18

amount of spectral data available for every object with photometric information. Despite the unprecedented volume of19

spectra gathered by recent surveys, spectroscopic instruments are not capable of observing each of the photometrically20

cataloged stars. The Sloan Digital Sky Survey (SDSS) Photometric Catalog has cataloged over one billion photometric21

sources but the SEGUE 1 and SEGUE 2 spectroscopic surveys only have about 2 million objects with optical spectra22

(Alam et al. 2015). Since case-by-case analysis for each data point becomes impossible, data-driven machine-learning23

methods can prove to be extremely helpful. The data-driven nature of machine-learning models and the technological24

advancements in computation time allows these models to process large datasets and derive desired stellar quantities25

in a relatively small time.26

Many studies in the past have used machine-learning models to study stellar quantities (Debosscher et al. 2007)27

(Dubath et al. 2011), but recently the focus has shifted to studying fundamental physical properties (Miller et al.28

2015). In the case of [Fe/H], a star with enhanced metal content produces less flux in the visible blue wavelength29

(∼ 4500 Å) of the optical spectrum. Therefore, surveys with blue filters (u’ and g’ in SDSS) can be used to approximate30

metallicity via photometric colors of the star. The best estimates for photometric methods to compute [Fe/H] produce31

a scatter of ∼0.3 dex (Kerekes et al. 2013).32

Using the 5 SDSS broadband photometric filters (u’, g’, r’, i’, z’), a Random Forest (RF) Regressor can be trained33

to approximate [Fe/H]. The model is trained with data from∼140,000 stars cataloged by the SEGUE 1 and SEGUE34

2 surveys of SDSS that have reliable estimates of [Fe/H]. The final model is capable of estimating [Fe/H] with a low35

error rate.36
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2. DATA37

The training set for the RF model is constructed from a sample of stars with existing SDSS optical spectra. The data38

comes from SEGUE 1 and SEGUE 2 surveys, which have around 400, 000 stellar observations. The optical spectra39

are analyzed by the SEGUE Stellar Parameters Pipeline (SSPP), which are optimized to estimate [Fe/H] for stellar40

sources along with corresponding uncertainties (Lee et al. 2008). For high signal-to-noise ratio spectra, SSPP measures41

[Fe/H] has a typical uncertainty of 0.29 dex. The pipeline also flags spectra for which reliable estimates cannot be42

provided.43

Therefore, the training set includes only stars (376073) that did not raise any flags during SSPP processing (211247)44

and had at least 2 SSPP readings with no duplicates (182408). These filters on the raw data ensure that both the45

photometric and spectroscopic uncertainties are small. With a 75 − 25 train-test-split this creates a training sample46

of ∼140,000 stars with reliable measurements of [Fe/H].47

During the pre-processing stage, extreme outliers (x < Q1 - 1.5 IQR or x > Q3 + 1.5 IQR) are also removed for each48

SDSS passband to make the data reliable. The training sample is further reduced to around 139,850 stars.49

Figure 1. Optimized result of running the model on test set

3. RESULTS50

The 5 SDSS broadband photometric filters are used to construct 4 color channels (u’ −g’, g’ −r’, r’ −i’, i’ −z’),51

which form the input features for the supervised machine-learning model. To perform regression between photometric52

colors and [Fe/H], an RF Regressor is used. This Regressor builds multiple decision trees from random samples of53

the training set. The random sampling at each node of the tree ensures that the RMSE is minimized in the resulting54

branches. The average of the outputs from each tree, therefore, gives a robust estimate of [Fe/H].55

After training the model and optimizing it by tuning the hyperparameters, the cross-validated RMSE on the training56

set turned out to be 0.271 dex. The result of applying the model on a test set produced an RMSE of 0.277 dex. The57

catastrophic error rate (CER), which is the probability of a prediction being 0.75 dex away from the true value, for58

the test set was 0.024 (2.4%). The results of running the model on the test set can be seen in Figure 1, plot (1). The59

model has a tight scatter around the one-to-one regression line. Since the SSPP estimates of [Fe/H] have a typical60

uncertainty of ∼ 0.24 dex, this RF model produces a scatter that is similar to that of a low-resolution spectrum.61

But, this model only depends on photometric input, and therefore can be used to calculate [Fe/H] values of stars62
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whose spectrum couldn’t be obtained previously. This expands the catalog for [Fe/H] values to close to a billion stars63

(virtually all stars with photometric data), approximately 3 orders of magnitude larger than the spectroscopic data64

available.65

4. CONCLUSION66

Metallicity is a fundamental parameter for all stars. This machine-learning model is capable of estimating [Fe/H] with67

a typical scatter of ∼ 0.27 dex. This method is also fast and can be applied in batches of 10, 000 stars with a relatively68

small computational cost. This method thus provides metallicity measurements for about 3 orders of magnitude more69

stars than the current spectroscopic surveys. This expands the potential applications of studying metallicity. It can70

help with the search for rare class of extremely metal-poor stars (Schlaufman & Casey 2014) (although the training71

set will need to be enhanced to include more of the metal-poor stars). Furthermore, it can aid the study of stellar72

evolution, and help understand the formation of the Milky Way.73

We would like to thank Dr. Shyamal Mitra, the leader of the Geometry of Space research group at The University of74

Texas at Austin, for his help in organizing this line of inquiry.75
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