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Enhancing Stellar Temperature Estimation through Machine Learning and Multifaceted Data Exploration

SIDDHI BANSAL,1 PHILLIP PHAN,1 AND ZAYAAN RAHMAN1

1The University of Texas at Austin,
Austin, TX, USA

ABSTRACT

This paper employs machine learning to estimate stellar temperatures using photometric data, focusing on
the GAIA ESA Archive Data Release 3 dataset. The study underscores the effectiveness of neural networks
in deciphering intricate relationships within the data. Notably, the addition of metallicity improves model ac-
curacy in characterizing stellar properties. The study also investigates outlier removal techniques, specifically
favoring the Isolation Forest method, showcasing its efficacy in refining model performance. Automated ma-
chine learning, facilitated by PyCaret Regressor, emerges as a valuable tool, identifying top-performing models
and highlighting feature importance. The implications of this research extend beyond the specifics of stellar
temperature estimation. In contemplating future directions, this study suggests the exploration of diverse data
sources to ensure balanced distributions of stellar temperatures and the potential incorporation of deep learning
architectures for heightened accuracy in addressing astrophysical inquiries.

1. INTRODUCTION

How can we approximate the temperatures of different stars using photometric data,

and improve predictions by synthesizing other data?

Approximating the temperatures of different stars using photometric data is accomplished through the use1

of color indices, which quantify the star’s brightness in different parts of the electromagnetic spectrum. A2

common method involves measuring a star’s brightness using photometric bands such as the U, G, R, I, and3

Z filters.4

The key idea is that hotter stars emit more energy in the shorter, bluer wavelengths and appear brighter5

in the U and G bands, while cooler stars emit more in the longer, redder wavelengths and are brighter in6

the I and Z bands. The color index allows astronomers to place the star on a color-temperature diagram,7

such as the Hertzsprung-Russell diagram, and estimate its temperature based on the observed color. This8

photometric technique provides a powerful tool for categorizing stars across the universe, aiding in the9

determination of the characteristics of a star.10

Gaia became the primary source of data considering its expansive catalog, which offers stars with temper-11

atures over 40,000K. We used the GAIA Data Release 3 dataset (ESA Gaia Collaboration (2022)).12
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2. DATA13

We decided on Gaia as our source of data to retrieve the star’s photometric data and metallicity for a14

total of just over 350,000. We used the gaia source table to query the features of the stars. We obtained15

the information of the stars by steps of 500K so that we can have a balanced distribution of star tempera-16

tures. However, for temperatures before 2500K and after 20,000K our fixed number of stars per step was17

significantly decreased since there were very few stars in that range. After running some linear regression18

models with photometric data, we decided to add metallicity as an additional parameter. Additionally, we19

used the Isolation Forest Algorithm to remove outliers from our data, which were originally skewing our20

results. We trained a general neural network on this dataset with outliers and without metallicity to predict21

the temperature of a star. Then, we used AutoML via PyCaret to survey a space of multiple models and22

converge on an even more accurate top model.23

As seen in the GAIA Data Release Documentation 8.3.1 Effective temperatures by René Andrae (Gaia24

Collaboration (2018)), previous work has been done with predicting effective temperatures using the GAIA25

Data Release 2 by using an ExtraTrees regression model. This model was trained on stars’ photometric data26

and predicts effective temperature.27

Our model, while also predicting effective star temperature, differs from this study in multiple ways,28

including the type of ML model used for training (neural networks), the training parameters (photometric29

data and metallicity), and outlier detection.30

In addition, the original study only used photometric data to determine stellar effective temperature. By31

including metallicity as an additional feature in our model, we were able to better estimate the temperatures32

of stars by using multiple characteristics. As seen in the Annual Review of Astronomy and Astrophysics33

Chapter 5, ”an increase in metallicity results in lower effective temperatures” Conroy (2014). By accounting34

for metallicity in our model, we can improve the existing study by accounting for other stellar features that35

can affect temperatures significantly.36

In the original study, an ExtraTrees ensemble regressor was used, which proved to be a fairly potent37

non-parametric learning algorithm. However, it had its limitations. First of all, its training was limited to38

non-synthetic photometry and the temperature range was limited to 3000K-10000K, thus being very limited39

in ability to extrapolate. Our general neural network model significantly improves the prediction range due40

to training on star data points from a much wider range of temperatures. Additionally, because of the neural41

network’s optimization update via back-propagation and stochastic gradient descent, it is inherently more42

adaptable to changes in data, meaning whether or not there is synthetic data or misleading data that becomes43

corrected later on, is not as much of a problem as it is for ExtraTrees. Finally, neural networks have a strong44

capability of feature extraction and function approximation for an arbitrary dataset. This allows scientists45

to both infer what aspects of a star’s data contribute more to its temperature, as well as apply the model for46

new features like new color indices that may reveal new patterns.47

3. RESULTS48

Research Notes of the AAS ©2024. Published by the American Astronomical Society



3

We employed a neural network using the TensorFlow library. The ultimate model for the GAIA dataset49

consists of 4 input nodes (3 color filters + metallicity), 4 hidden layers, 2 64-node layers, 2 32-node layers,50

and 1 output node for the temperature value. The hidden layers were decided as a result of trial and error51

based on validation accuracy, in addition to tuning the number of training epochs. Also, by applying the52

Isolation Forests algorithm for outlier detection, 8% of our stars were removed while enhancing the accuracy53

and reliability of our star temperature estimation model. Our accuracy with this model was 73% (61% before54

detecting outliers). Star temperatures towards the lower (2500K) and higher ends (20,000K) had limited55

data, causing our model to predict in undesirable ways. However, temperatures between the extreme ends56

show more confident predictions, giving us confidence in predicting star temperature between this range.57

Automated machine learning (AutoML) is an emerging yet relatively unexplored technique for optimizing58

the design of machine learning models. It involves iterating the data set over a series of different machine-59

learning models, each with unique parameters and structures. This includes not only neural networks,60

but decision trees, K-neighbors, and many hybrid-resembling models. After iterating over a multitude of61

models, it ranks each model’s performance on a leaderboard so the programmer can focus on the top-62

performing models. Overall, AutoML helps to reduce time spent on manual model searching and parameter63

tuning.64

We decided to use the PyCaret Regressor library for our implementation of AutoML. It was run on GAIA,65

with outlier removal and metallicity included. The top-performing model of GAIA was the Random For-66

est Regressor with a r2 value of 0.822 on the test split. Thus, through AutoML, the top models yielded67

correlations significantly higher than the tuned neural network counterpart.68

4. CONCLUSION69

Our study has yielded several key findings regarding the estimation of stellar effective temperatures using70

machine learning algorithms. Firstly, neural network models consistently outperformed linear regression71

and polynomial regression models, demonstrating their superior ability to capture complex relationships72

between photometric data and temperature. This highlights the potential of neural networks in astronomical73

applications involving temperature estimation.74

Secondly, the Isolation Forest outlier detection program proved to be effective at identifying and removing75

outliers from our dataset. Its adaptiveness and robustness to outliers made it well-suited for handling the76

diverse characteristics of our data.77

Thirdly, incorporating metallicity as an additional parameter significantly enhanced the accuracy of our78

models for all three machine learning algorithms. This finding underscores the importance of metallic-79

ity in characterizing stellar properties and its influence on temperature estimation, especially when using80

photometric data.81

Finally, the U-G color index exhibited the highest degree of skewness and outlier density among the82

photometric parameters. Applying the Isolation Forest outlier detection program specifically to the u-g83
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Figure 1. Gaia neural network results and AutoML model rankings

parameter resulted in a substantial improvement in model accuracy, further emphasizing the importance of84

effective outlier detection for enhancing model performance.85

Through AutoML, we were able to run and test other models that would’ve otherwise been outside the86

scope of this study, providing us with valuable insights into the relationships between effective star temper-87

ature and photometric data.88

Overall, through this study, we were able to conclude that photometric data and effective stellar tempera-89

tures have a relationship when an additional star characteristic - metallicity - is also considered.90

We thank Shyamal Mitra, our mentor in the Geometry of Space research group at the University of Texas
at Austin, for his support and guidance in developing our research.
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