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Enhancing Stellar Temperature Estimation through Machine Learning and Multifaceted Data Exploration

SIDDHI BANSAL,! PHILLIP PHAN,' AND ZAYAAN RAHMAN!
YThe University of Texas at Austin,

Austin, TX, USA

ABSTRACT

This paper employs machine learning to estimate stellar temperatures using photometric data, focusing on
the GAIA ESA Archive Data Release 3 dataset. The study underscores the effectiveness of neural networks
in deciphering intricate relationships within the data. Notably, the addition of metallicity improves model ac-
curacy in characterizing stellar properties. The study also investigates outlier removal techniques, specifically
favoring the Isolation Forest method, showcasing its efficacy in refining model performance. Automated ma-
chine learning, facilitated by PyCaret Regressor, emerges as a valuable tool, identifying top-performing models
and highlighting feature importance. The implications of this research extend beyond the specifics of stellar
temperature estimation. In contemplating future directions, this study suggests the exploration of diverse data
sources to ensure balanced distributions of stellar temperatures and the potential incorporation of deep learning
architectures for heightened accuracy in addressing astrophysical inquiries.

1. INTRODUCTION

How can we approximate the temperatures of different stars using photometric data,
and improve predictions by synthesizing other data?

+  Approximating the temperatures of different stars using photometric data is accomplished through the use
. of color indices, which quantify the star’s brightness in different parts of the electromagnetic spectrum. A
s common method involves measuring a star’s brightness using photometric bands such as the U, G, R, I, and
« Zfilters.
s The key idea is that hotter stars emit more energy in the shorter, bluer wavelengths and appear brighter
¢ 1n the U and G bands, while cooler stars emit more in the longer, redder wavelengths and are brighter in
7 the I and Z bands. The color index allows astronomers to place the star on a color-temperature diagram,
s such as the Hertzsprung-Russell diagram, and estimate its temperature based on the observed color. This
s photometric technique provides a powerful tool for categorizing stars across the universe, aiding in the
1 determination of the characteristics of a star.
+  Gaia became the primary source of data considering its expansive catalog, which offers stars with temper-
= atures over 40,000K. We used the GAIA Data Release 3 dataset (ESA Gaia Collaboration (2022)).
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13 2. DATA

w  We decided on Gaia as our source of data to retrieve the star’s photometric data and metallicity for a
s total of just over 350,000. We used the gaia_source table to query the features of the stars. We obtained
 the information of the stars by steps of 500K so that we can have a balanced distribution of star tempera-
7 tures. However, for temperatures before 2500K and after 20,000K our fixed number of stars per step was
s significantly decreased since there were very few stars in that range. After running some linear regression
» models with photometric data, we decided to add metallicity as an additional parameter. Additionally, we
0 used the Isolation Forest Algorithm to remove outliers from our data, which were originally skewing our
2 results. We trained a general neural network on this dataset with outliers and without metallicity to predict
= the temperature of a star. Then, we used AutoML via PyCaret to survey a space of multiple models and
s CONVErge on an even more accurate top model.

2« As seen in the GAIA Data Release Documentation 8.3.1 Effective temperatures by René Andrae (Gaia
s Collaboration (2018)), previous work has been done with predicting effective temperatures using the GAIA
s Data Release 2 by using an ExtraTrees regression model. This model was trained on stars’ photometric data
 and predicts effective temperature.

s Our model, while also predicting effective star temperature, differs from this study in multiple ways,
2 including the type of ML model used for training (neural networks), the training parameters (photometric
» data and metallicity), and outlier detection.

s«  In addition, the original study only used photometric data to determine stellar effective temperature. By
» 1ncluding metallicity as an additional feature in our model, we were able to better estimate the temperatures
s Of stars by using multiple characteristics. As seen in the Annual Review of Astronomy and Astrophysics
« Chapter 5, "an increase in metallicity results in lower effective temperatures” Conroy (2014). By accounting
s for metallicity in our model, we can improve the existing study by accounting for other stellar features that
s can affect temperatures significantly.

«  In the original study, an ExtraTrees ensemble regressor was used, which proved to be a fairly potent
s non-parametric learning algorithm. However, it had its limitations. First of all, its training was limited to
» non-synthetic photometry and the temperature range was limited to 3000K-10000K, thus being very limited
« 1n ability to extrapolate. Our general neural network model significantly improves the prediction range due
« to training on star data points from a much wider range of temperatures. Additionally, because of the neural
«» network’s optimization update via back-propagation and stochastic gradient descent, it is inherently more
«» adaptable to changes in data, meaning whether or not there is synthetic data or misleading data that becomes
« corrected later on, is not as much of a problem as it is for ExtraTrees. Finally, neural networks have a strong
»s capability of feature extraction and function approximation for an arbitrary dataset. This allows scientists
« to both infer what aspects of a star’s data contribute more to its temperature, as well as apply the model for

« new features like new color indices that may reveal new patterns.

48 3. RESULTS
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»  We employed a neural network using the TensorFlow library. The ultimate model for the GAIA dataset
o consists of 4 input nodes (3 color filters + metallicity), 4 hidden layers, 2 64-node layers, 2 32-node layers,
s and 1 output node for the temperature value. The hidden layers were decided as a result of trial and error
== based on validation accuracy, in addition to tuning the number of training epochs. Also, by applying the
s Isolation Forests algorithm for outlier detection, 8% of our stars were removed while enhancing the accuracy
s« and reliability of our star temperature estimation model. Our accuracy with this model was 73% (61% before
s detecting outliers). Star temperatures towards the lower (2500K) and higher ends (20,000K) had limited
s data, causing our model to predict in undesirable ways. However, temperatures between the extreme ends
s»  show more confident predictions, giving us confidence in predicting star temperature between this range.

s Automated machine learning (AutoML) is an emerging yet relatively unexplored technique for optimizing
s the design of machine learning models. It involves iterating the data set over a series of different machine-
o learning models, each with unique parameters and structures. This includes not only neural networks,
& but decision trees, K-neighbors, and many hybrid-resembling models. After iterating over a multitude of
« models, it ranks each model’s performance on a leaderboard so the programmer can focus on the top-
s performing models. Overall, AutoML helps to reduce time spent on manual model searching and parameter
e« tuning.

es  We decided to use the PyCaret Regressor library for our implementation of AutoML. It was run on GAIA,
e« with outlier removal and metallicity included. The top-performing model of GAIA was the Random For-
& est Regressor with a r? value of 0.822 on the test split. Thus, through AutoML, the top models yielded
e correlations significantly higher than the tuned neural network counterpart.

69 4. CONCLUSION

n»  Our study has yielded several key findings regarding the estimation of stellar effective temperatures using
7 machine learning algorithms. Firstly, neural network models consistently outperformed linear regression
» and polynomial regression models, demonstrating their superior ability to capture complex relationships
s between photometric data and temperature. This highlights the potential of neural networks in astronomical
7« applications involving temperature estimation.

s Secondly, the Isolation Forest outlier detection program proved to be effective at identifying and removing
% outliers from our dataset. Its adaptiveness and robustness to outliers made it well-suited for handling the
7 diverse characteristics of our data.

»  Thirdly, incorporating metallicity as an additional parameter significantly enhanced the accuracy of our
s models for all three machine learning algorithms. This finding underscores the importance of metallic-
o ity in characterizing stellar properties and its influence on temperature estimation, especially when using
sr photometric data.

22  Finally, the U-G color index exhibited the highest degree of skewness and outlier density among the

ss photometric parameters. Applying the Isolation Forest outlier detection program specifically to the u-g
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rf Random Forest Regressor 1914.2137 12629994.1581 3553.0654 0.8233 0.2923 0.2045
et Extra Trees Regressor 1994.2799 13065051.2691 3613.9336 0.8172 0.3004 0.2157
lightgbm Light Gradient Boosting Machine 2178.7956 13210201.29 3633.8995 0.8152 0.3178 0.2453
knn K Neighbors Regressor 2082.7558 14677831.6 3830.5763 0.7947 0.3197 0.2321
gbr Gradient Boosting Regressor 2547.8884 15953736.32 3993.6848 0.7768 0.3617 0.2977
dt Decision Tree Regressor 2315.0227 22890085.39 4782.8187 0.6798 0.3798 0.2323
ada AdaBoost Regressor 4098.956 32383856.45 5686.7509 0.5472 0.4872 0.4885
llar Lasso Least Angle Regression 4622.9819 41777917.6 6463.3357 0.4156 0.564 0.5685

Figure 1. Gaia neural network results and AutoML model rankings

parameter resulted in a substantial improvement in model accuracy, further emphasizing the importance of
effective outlier detection for enhancing model performance.

Through AutoML, we were able to run and test other models that would’ve otherwise been outside the
scope of this study, providing us with valuable insights into the relationships between effective star temper-
ature and photometric data.

Overall, through this study, we were able to conclude that photometric data and effective stellar tempera-
tures have a relationship when an additional star characteristic - metallicity - is also considered.

We thank Shyamal Mitra, our mentor in the Geometry of Space research group at the University of Texas

at Austin, for his support and guidance in developing our research.
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