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ABSTRACT6

Machine learning can be utilized to classify spectra flagged as Active Galactic Nuclei (AGN) belong-7

ing to Seyferts or Quasars, expediting data collection and aiding in analyzing the AGN types. While8

many properties of Seyferts and Quasars can be used as feature points in training a machine learning9

model, one relatively available property with high information density is the spectra of the AGN types.10

This paper aims to describe the training and results of a K-Nearest Neighbors (KNN) and a Dense11

Neural Network (DNN) machine learning model built to classify AGNs as Seyfert type 1s, Seyfert type12

2s, or Quasars.13

1. INTRODUCTION14

Since their discovery, two types of Active Galactic Nuclei (AGN), Seyferts and Quasars, have gained significant15

traction in the scientific community. Seyferts appear as very luminous celestial objects, with their total radiation16

output rivaling the amount emitted by the entirety of the constituent stars in their host galaxies. Seyfert objects17

can be further classified into two major classes based on the relative line widths of their emission spectra: Seyfert 1s18

and Seyfert 2s. While both Seyfert types have broad line widths relative to non-AGN spectra, Seyfert 1s have very19

broad permitted lines on the order of 104 kilometers per second, which Seyfert 2s lack. Like Seyferts, Quasars emit20

tremendous amounts of radiation; however, while Seyferts emit radiation comparable in intensity to their host galaxy,21

quasars outshine them immensely as they put off more light at further distances generally. Both Seyferts and Quasars22

have been attributed to be hosts of supermassive black holes in the center of galaxies, making them hot topics of23

scientific research. Understanding the processes behind Seyfert and Quasars will help expand our understanding of24

galaxy morphology, star formation, and the composition of the early universe. It is useful to consider other studies,25

which used similar machine learning methods, such as Ma et al. (2019) and Cavuoti et al. (2013). By looking at26

these studies and our own, we believe machine learning is crucial to accelerate the classification of AGNs based on27

the spectral values measured. We seek to fit a model that is able to accurately classify Seyferts and Quasars across28

varying redshifts, which proves difficult normally. This model will focus on doing spectral classifications of Quasars29

versus Seyferts.30

2. DATA COLLECTION31

Our study primarily utilized data from the Sloan Digital Sky Survey (SDSS) Data Release 18 (Kollmeier et al. 2019)32

and the Veron Catalog of Quasars & AGN (VeronCAT), 13th edition (Véron-Cetty & Véron 2010). We specifically33

retrieved data using SQL queries over data from SDSS-V and the Science Archive Server for FITS files. We were able34

to interface with the SDSS data through the Catalog Archive Server (CAS). CAS provided a vast array of objects35

with detailed spectra, notably from its SpecObj subset which includes about 5.1 million objects. However, as SDSS’s36

classification of AGNs is limited, we incorporated the VeronCAT Catalog for more nuanced AGN classifications. We37

utilized TopCAT to cross-match a batch SQL query from SDSS with a TAP query from VeronCAT using a maximum38
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error margin of 8 arc-seconds. After cross-matching, we had 61,270 data points, out of which approximately 35,00039

spectra FITS files were available from the SDSS Science Archive Server.40

We then processed this data with a Python program; This program extracted spectral information and downloaded41

spectra files. The Python program created a CSV file from this data collected, which we later used with Pandas to42

serve as the input to our model. The final analysis, involving trend identification and visualization, was performed43

using Python libraries such as Pandas and Matplotlib. This approach enabled us to efficiently categorize and analyze44

the data, particularly focusing on AGN subclassifications and their properties.45

3. MODEL PARAMETERS46

For the dense neural network, we used Tensorflow as the machine learning library. The training parameters were47

approximately 3900 measured flux values for different wavelengths, extracted from the FITS file, as well as the estimated48

redshift for the object. The training target was the category of the object (Quasar, Seyfert 1, or Seyfert 2). We used49

one-hot encoding for our three classification classes. This converted our categorical data of classifications into numerical50

values to be used as input and output for the dense neural network. For the hidden layers, we decided to use the51

ReLu activation function, which was found to be the best general activation function for dense neural networks in52

most cases (Bai 2022). The softmax activation function was utilized for the output layer for an easy conversion into53

labels. We decided to test two different hidden layer patterns: a 256-32 layer pattern and a 1024-256-64-16 layer54

pattern. For both patterns, we trained for 200 maximum epochs with early stopping enabled with a patience of 40.55

Finally, we tested our model both with L2 regularization implemented and without regularization, creating a total of56

four model architectures for the neural network; To reduce variation in our results, we tested each architecture three57

times with different random states and averaged the results together. For the KNN model, we tested four different58

nearest-neighbor sizes: 5 neighbors, 10 neighbors, 20 neighbors, and 50 neighbors. For each size, we tested a uniform59

and an inverse-to-distance weight function for prediction. Similar to the neural network test, we ran each subtest three60

times with different random states. To calculate accuracies, we used the Scikit-learn accuracy score metric.61

KNN Results

5 Neighbors 10 Neighbors 20 Neighbors 50 Neighbors

Distance 91.39% 91.76% 91.41% 89.88%

Uniform 91.76% 91.40% 91.00% 90.12%

Neural Network Results

Small Large

No Regularization 93.16% 93.98%

Regularization 92.18% 92.36%

Class Accuracy Breakdown

Quasars Seyfert 1s Seyfert 2s

10 Neighbor Distance KNN 98.89% 56.85% 79.06%

Non-regularized Large DNN 98.73% 71.97% 76.78%

Table 1. Comparison of Model Accuracies

4. RESULTS62

The majority of the differences in predictions were from the KNN mispredicting true Seyfert 1s as Quasars, which63

the neural network was better at predicting. Another larger source of differences was with one model predicting an64

AGN as a Seyfert 1 and the other model predicting an AGN as a Seyfert 2. Both models generally agreed on Quasar65

predictions; moreover, an AGN classified as a Quasar by one model was seldom classified as a Seyfert 2 by the other66

model.67

The kNN model tended to perform better with correctly predicting Seyfert 1s with lower redshifts relative to68

predicting Seyfert 1s with higher redshifts. This is likely due to Quasar objects tending to have a higher redshift69
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value than Seyferts, allowing the model to use the redshift values to distinguish Quasars from Seyferts; moreover, high70

redshifts compress the spectra of objects, further aiding with differentiation. We hypothesize that the neural network71

performed better with predicting even high-redshift Seyfert 1s due to the neural network suffering less from the very72

high dimensionality of our training set (University 2018). The KNN model performed significantly worse than our73

dense neural network when dealing with Seyfert 1s. However, both the KNN model and the neural network performed74

worse on intermediate Seyfert subclassifications than their respective Quasar classifications; Subclassifications which75

gave our models issues were Seyfert 1.2s (which we grouped as a Seyfert 1), Seyfert 1.8s (which we grouped as a Seyfert76

2), and especially Seyfert 1.5s (which we grouped as a Seyfert 1). Attempting to group Seyfert 1.5s as Seyfert 2s instead77

did not seem to improve the accuracy of our models, with the large, non-regularized neural network performing at78

93.68% accuracy. A further breakdown on the best-performing models and information about other models can be79

found in Table 1.80

We hypothesize that the greater degree of mispredictions for these Seyfert subclasses is due to the spectra of81

intermediate Seyferts being more ambiguous, containing features that are not distinctly similar to those of either82

true Seyfert 1s or Seyfert 2s. Our results corroborate with the unification scheme for Active Galactic Nuclei, which83

suggests that all AGN are formed through the same cosmic phenomenon (Spinoglio & Fernandez-Ontiveros 2019). The84

unification scheme theory implies that AGN features occupy a continuous range instead of distinct types, which means85

that some nuclei can’t be easily classified by a machine learning model. It is worthwhile to note this theory is still a86

topic under debate, and the current inability to accurately classify intermediate classes of objects does lend support87

to the notion of AGN properties being on a spectrum.88

We want to thank Dr. Mitra, Dr. Gebhardt, our peer mentors, and all members of the Geometry of Space stream in

the Freshman Research Initiative at the University of Texas at Austin for all the help they gave along the way.
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