RESEARCH ARTICLE | OCTOBER 01 2024
The Application of Machine Learning to AGN Classification
@

Vivek Abraham &&; Joel Deville; Garv Kinariwala

’ '.) Check for updates ‘

J. Undergrad. Res. Phys. Astron. 34, 100001 (2024)
https://doi.org/10.1063/10.0034182

@ B

View Export
Online  Citation

Articles You May Be Interested In

Seyferts and radio galaxies

AIP Conf. Proc. (May 1997)

Quasistellar objects and seyfert galaxies

Physics Today (January 1969)

To be or not to be a blazar. The case of the narrow-line Seyfert 1 SBS 0846+513

AIP Conf. Proc. (December 2012)

()
e
©
-
L®)]
©
S
(@)
-
QO
O
c
-
T
@)
©
| -
-
-
o
ﬂ

Research in Physics
and Astronomy

AIP
é/:. Publishing

8€:91:G1 GZOZ JOGUIBNON €T


https://pubs.aip.org/aip/jurp/article/34/1/100001/3317673/The-Application-of-Machine-Learning-to-AGN
https://pubs.aip.org/aip/jurp/article/34/1/100001/3317673/The-Application-of-Machine-Learning-to-AGN?pdfCoverIconEvent=cite
javascript:;
javascript:;
javascript:;
https://crossmark.crossref.org/dialog/?doi=10.1063/10.0034182&domain=pdf&date_stamp=2024-10-01
https://doi.org/10.1063/10.0034182
https://pubs.aip.org/aip/acp/article/410/1/283/684578/Seyferts-and-radio-galaxies
https://pubs.aip.org/physicstoday/article/22/1/27/426507/Quasistellar-objects-and-seyfert-galaxiesAre-these
https://pubs.aip.org/aip/acp/article/1505/1/570/822660/To-be-or-not-to-be-a-blazar-The-case-of-the-narrow

The Application of Machine Learning to AGN Classification

Vivek Abraham,? Joel Deville,” and Garv Kinariwala®

University of Texas at Austin
2515 Speedway, Austin, Texas 78712, USA

 vivek.abraham@utexas.edu
b jdeville@utexas.edu
9 garvkinariwala@gmail.com

Abstract. A relatively new development in quasar and Seyfert research is the utilization of machine learning to expedite data
collection and aid in analysis. This paper discusses a specific application of machine learning: to classify active galactic nuclei
(AGN) as Seyfert type 1s, Seyfert type 2s, or quasars. Initially we focus on summarizing the development of research on the nuclei
types from their discovery to present day. Then, our paper moves to a more focused discussion of the utilization of machine learning
to classify AGN types. The importance of expedited AGN classification, as well as avenues for future research into the intersection
of classification algorithms and AGNs, are discussed.

INTRODUCTION

Since their discovery, two types of active galactic nuclei (AGN) have gained significant traction in the scientific
community: Seyferts and quasars. Seyferts, first identified in the 1940s, are distinguished by the broad emission lines
in their spectra and emit very high amounts of radiation, usually rivaling the amount emitted by the entirety of the
constituent stars in their host galaxies [1]. As observational technology progressed and research into AGNs developed,
astronomers discovered that Seyferts could be further categorized into two major subclasses: Seyfert 1 galaxies, which
exhibit both narrow and broad emission lines in their spectra, and Seyfert 2 galaxies, which only exhibit (relatively)
narrow emission lines [2].

Quasars, first identified in the 1960s, appear as extremely luminous galactic objects. Like Seyferts, quasars emit
tremendous amounts of radiation [3]. However, while Seyferts are comparable in brightness to their host galaxy,
quasars greatly eclipse their hosts, outshining the rest of the galaxy by two orders of magnitude or more. Due to the
parallels between Seyferts and quasars, the two AGN types are often studied in tandem. Due to their unique properties,
Seyferts and quasars have been instrumental in broadening our understanding of galaxy morphology and the large-
scale structure of the universe. Accelerating the rate at which we can classify these galaxies will help propel collective
research efforts toward more pressing research questions regarding galaxy evolution and star formation in the early
universe.

HISTORY

Research on Seyfert galaxies was spearheaded by Carl Seyfert with his 1943 paper “Nuclear Emission in Spiral
Nebulae.” Seyfert analyzed the spectra of six spiral galaxies that had extremely large amounts of radiation emitting
from their nuclei, finding that the nuclei’s spectra contained several broad emission lines that were not present in non-
emitting nuclei [4]. While neither Seyfert nor the rest of the scientific community understood the mechanisms behind
the nuclei type at that time, his study helped pave the way for deeper research into the phenomenon, leading to "Seyfert
galaxies" being named in his honor.

By the 1960s, astronomers had discovered that Seyfert nuclei were extremely dense and had high mass, usually
weighing between 10° and 10'° solar masses. In addition, the duration of peak emissions was estimated to be on the
order of 10® years [5]. Due to increasing interest in Seyferts, a conference was held in 1968 to collate findings on the
celestial objects, focusing on 13 galaxies with emission lines indicative of Seyfert activity [6]. Several theories for the
broad Balmer lines found in Seyfert spectra were presented, the most popular of which postulated that the lines were
produced by gas with both high electron density and high electron scattering; however, most scientists believed that
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these theories failed to fully explain other characteristics of Seyfert spectra, such as their very weak Bowen OIII lines
[6].

As research into Seyferts steadily developed, quasars began to emerge as another enigmatic celestial phenomenon.
Quasar objects were first detected in the late 1950s through all-sky radio surveys, appearing as strong, stellar-like
radio emissions [7]. In 1962, the location of one such source, 3C 273, was pinpointed and its spectra analyzed. The
spectra contained broad, unfamiliar emission lines and appeared to have a redshift of z=0.16 [8]. While such sources
were initially attributed to stars, their calculated redshifts were far greater than that of any star previously observed;
moreover, interferometry determined that the angular size of the sources was very small. A year later, Maarten Schmidt
hypothesized that the sources were formed through distant, extremely powerful objects [9]. However, due to the
uncharacteristically massive amount of energy that the objects would have to produce to be at the distances he
postulated, his theories were not widely accepted by the scientific community at the time.

While research into quasars progressed into the mid-1960s, the processes behind the phenomenon were still not
well understood [9]. In 1964, Edwin Salpeter and Yakov Zeldovich suggested that quasar activity could be caused by
matter falling into a supermassive black hole; however, their theory was largely dismissed because the existence of
black holes was not generally accepted at that time [7]. Meanwhile, many more Seyfert galaxies were being identified;
by the 1970s, more than 700 potential Seyferts were flagged [10]. As the sample of Seyfert galaxies grew, it became
apparent to astronomers that Seyferts contained distinct enough spectra to warrant further classification (see Fig. 1).
Daniel Weedman spearheaded the subdivision of Seyfert galaxies into Seyfert 1s and Seyfert 2s; Seyfert 1s contain
broad Balmer lines (relative to the length of the forbidden lines), while Seyfert 2s contain Balmer lines and forbidden
lines of approximately the same width [2].

Spectrum of Seyfert 1 with redshift 0.294
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FIGURE 1. Top: Spectrum of Sloan Digital Sky Survey (SDSS) object 731880605133858816, a Seyfert 1. Bottom:
Spectrum of SDSS object 435764525682157568, a Seyfert 2. Note the significantly broader Balmer lines of the top
spectrum.
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The existence of supermassive black holes was confirmed in 1974 by Bruce Balick and Robert Brown using a
radio interferometer. The astronomers discovered evidence of a dense and immobile source emitting synchrotron
radiation at the center of the Milky Way, highly indicative of a black hole [11]. The accretion disks surrounding
supermassive black holes were quickly seen as key players in the phenomena observed in quasars and Seyfert galaxies.
The material drawn in by the black hole spins inward, forming an accretion disk. In doing this, large amounts of energy
(radiation and particles) are released [12]. By the mid-1970s, most astronomers agreed that the accretion disks
surrounding supermassive black holes sufficiently explained the broad Balmer lines and extreme luminosities of
quasars and Seyferts. In addition, calculations on the luminosity of matter accretion into supermassive black holes
proved to be sufficient to explain the high redshifts of quasar objects [13].

More properties of Seyfert galaxies and quasars were discovered in the late 1970s. In 1977, 60 Seyfert objects
were thoroughly surveyed by large-scale image-tube plates to better understand the properties of their host galaxies.
While image blur and faintness made some galaxies difficult to classify, the survey appeared to show that the vast
majority of Seyfert galaxies were spiral or barred spiral; very few Seyfert nuclei appeared in elliptical galaxies [14].
Meanwhile, observations of quasars revealed that most—about 90%—did not have strong radio emissions as
originally believed [15]. Quasars with strong radio emissions were entitled “radio loud,” while quasars with weaker
radio emissions were entitled “radio quiet.” The late 1970s also saw the discovery of the first Seyfert objects that did
not cleanly fall into either the Seyfert 1 or Seyfert 2 category, warranting the need for additional Seyfert subclasses:
Seyfert 1.2, 1.5, 1.8, and 1.9 [16]. As Seyfert numbering increases from 1.2 to 1.9, the broad Balmer beta line becomes
increasingly weak, being nearly undetectable in Seyfert 1.9s, similar to Seyfert 2s. While the additional Seyfert
subclasses warrant the need for a more careful analysis of AGN classification, most Seyfert galaxies are of type 1 or
2, and most objects in the other Seyfert subclasses can be interpolated into one of the two major classes.

The early 1980s yielded a conceptual leap in understanding Seyfert galaxies and quasars through the formulation
of the unified model of AGN. Studied by Robert Antonucci, this model captured the observed diversity in AGN classes
[17]. Antonucci's groundbreaking research extended into the 1990s and built upon foundational ideas proposed by
Martin Rees. Antonucci emphasized the significance of the observer's line of sight concerning the toroidal gas and
dust region surrounding a supermassive black hole. Seyfert 1 and Seyfert 2 galaxies share a common structure, with
the differences in their observed characteristics resulting from variations in the observer's viewing angle. Radio, x-
ray, and gamma-ray observations unveiled intricate AGN morphologies and energetic processes. X-ray observations,
for instance, revealed the intense emissions from the accretion disks around supermassive black holes. These
observations not only corroborated existing theories but also unveiled complex interactions between AGN components
and their host galaxies.

The improved technology of the 1980s and 1990s yielded many advancements in quasar and Seyfert research. In
addition to radio, gamma, and x-ray technology, infrared (IR) surveys from the Infrared Astronomical Satellite
provided a better picture of the toroidal dust structures surrounding supermassive black holes [18]. Moreover, infrared
radiation penetrates dust and gas, allowing previously obscured AGN to be detected through IR imaging. Meanwhile,
ultraviolet (UV) imaging allowed for finer-grain analysis of emission-line spectra from accretion disks, as much of
the continuum spectra from matter falling into supermassive black holes shows up in the UV spectrum. IR and UV
imaging also revealed that Seyfert galaxies are significantly more common than previously expected, with around
16% of galaxies containing Seyfert nuclei [19]. In addition, spectroscopy and imaging allowed astronomers to identify
quasar objects at extremely high redshifts. A survey of nine quasars with redshifts of z > 4 was conducted in 1995; the
study found that the quasars have similar x-ray and broadband spectra to closer quasars, suggesting that the accretion
dynamics of quasars have not significantly changed from a few billion years ago [20]. Due to their relative lack of
change over time, quasars have been identified as being paramount to mapping the early universe and serving as long-
distance standard candles [21].

In the 21st century, modern technology and more sophisticated observational techniques have allowed research on
Seyferts and quasars to thrive. The Hubble Space Telescope and the Chandra X-ray Observatory have created high-
resolution, multi-wavelength observations of AGNs, revealing their complicated structures and characteristics [22].
With the emergence of photometric surveys in astronomy, the challenge of processing and understanding massive
image data has become increasingly apparent in the 21st century [23]. Recent research has demonstrated the power of
machine learning in data processing and analysis. In the scope of AGNs, a convolutional neural network trained on
quasar spectra demonstrated 99.5% accuracy in identifying quasars and estimating their redshift [24]. As technology,
algorithms, and research methods continue to advance, Seyfert and quasar research remain at the forefront of
astrophysics, uncovering new layers of complexity in the universe.
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MACHINE LEARNING IN AGN CLASSIFICATION

One particularly interesting avenue for modern research into Seyferts and quasars involves the augmentation of
machine learning as a tool to expedite classifying the AGN types. Flagging sources as potential AGN and then
classifying them as quasars, Seyfert type 1s, or Seyfert type 2s are important steps in building large-scale models of
AGN. Machine learning can greatly increase the speed and accuracy at which classifications can be made relative to
human classification [25].

Machine learning classification can be a critical tool for identifying and categorizing celestial objects. Telescopes
and observatories are constantly capturing vast amounts of data from the sky, making it increasingly challenging for
astronomers to manually analyze and classify these objects. The current amount of data is staggering for humans to
keep up with. For instance, the Legacy Survey of Space and Time (LSST) will produce millions of data points per
night, making human-only classification infeasible [27]. On the other hand, a reasonably sized machine learning model
could easily keep up with the throughput of data, given sufficient computing power. By taking advantage of machine
learning, astronomers can automate the process of identifying and distinguishing between AGN types based on their
spectral signatures or distinct features in images. Machine learning models may also be able to decipher trends in the
raw feature sets of data that are invisible to humans. For example, a k-nearest neighbors (KNN) algorithm, given n
features, can cluster data in an n-dimensional hyperplane; meanwhile, humans struggle to find patterns within data
greater than three dimensions [26]. As a result, machine learning classification can help to offload and expedite the
time-consuming task of data analysis.

To advance this field further, the primary obstacles to overcome relate to the number of quasars and Seyfert
galaxies that we have data for. The Veron Catalog of Quasars & AGN has cataloged 133,326 quasars, but only 16,517
Seyfert 1s and less than 10,000 Seyfert 2s [28]. A machine learning algorithm that aims to classify quasars and Seyferts
from all AGN would be hurt by the disproportionately smaller number of Seyfert objects; to combat the data
imbalance, gathering more data on Seyfert objects would be beneficial. Specifically, a machine learning algorithm
would be most effective when trained on a dataset that accurately reflects the actual proportions of Seyfert and quasar
objects in the universe.

In addition to data, the future of this field is defined by the efficiency and accuracy of machine learning algorithms.
In the future, there will likely be modifications to current popular machine learning algorithms or brand-new ones that
are more efficient for this use case. Therefore, it is important to survey machine learning algorithms and
hyperparameters to see if one provides better accuracy than the others. Furthering our understanding of quasars and
Seyfert objects would also be beneficial for improving the accuracy of AGN classifications. By identifying features
more pertinent to these objects, an algorithm would likely make more accurate inferences. One avenue for gathering
more detailed data on quasars and Seyfert objects is instrumentation upgrades, which would allow us to detect more
precise details on the AGN types. Using this data within any machine learning algorithm would provide the algorithm
with finer granularity in determining whether or not an AGN is a quasar or a Seyfert object.

CONCLUSION

Seyferts and quasars are two highly intriguing types of cosmological phenomena, due to both the broad emission lines
in their spectra and the immense radiative output they produce. While our knowledge of them has drastically improved
since their discoveries in the 1940s and 1960s, respectively, our understanding of the AGN types remains incomplete.
Creating and refining machine learning models to aid with the classification of broad-line spectra will help
astronomers increase the efficiency of data collection on the AGN types, in turn helping us better understand the
morphological evolution of galactic nuclei and the connections or differences between both Seyfert types and quasars.
To make a robust machine learning model, the data imbalance between quasar objects and Seyfert galaxies needs to
be remediated; in addition, more features that distinguish between AGN types need to be pinpointed. Seyferts and
quasars are incredibly enigmatic phenomena that will likely continue to be at the forefront of astronomical research
for many decades to come. Through careful analysis of their radiation and spectra, along with machine learning as an
additional tool in our belt, we can analyze their unique properties to better understand the past, present, and future of
the universe.
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